Application Guidelines
for
Graduate School of Computer Science and Systems Engineering (Master’s Course)
Okayama Prefectural University
for
the 2020 Academic Year

(For Summer & Fall Application)
The Graduate School of Computer Science and Systems Engineering (Master’s Course), Okayama Prefectural University offers a Master’s Course of Systems Engineering consisting of three majors: Electronics, Information Communication Engineering Major, Mechanical and Information Systems Engineering Major, Human Information Systems Engineering Major. The Master’s Course of Systems Engineering provides research and education aiming to cultivate specialists with advanced knowledge as well as a broad range of basic knowledge in the field of computer science and systems engineering.

Since FY2001, this graduate school has employed a collaborative graduate school system featuring cross-disciplinary classes for the diversification of research and the pursuit of new areas of academic endeavor. Students wishing to enroll in cross-disciplinary classes are required to select a major when applying to the school and to belong to one when enrolling.

Please read program details thoroughly before submitting your application by predetermined deadline.

Admissions Schedule Overview

1. Summer Application

<table>
<thead>
<tr>
<th>Items</th>
<th>Schedule/Relevant Applicants/Examination Venue, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Consultation for Disabled Applicants</td>
<td>Until Thursday, July 18, 2019</td>
</tr>
<tr>
<td>Submission of Application for Qualification Screening</td>
<td>Until Thursday, July 25, 2019 [Applicants falling into Qualification (8), (9), or (10) on page 2]</td>
</tr>
<tr>
<td>Interview with the Master’s Course Instructor</td>
<td>Until Thursday, July 25, 2019 (Except for the prospective graduate students of our school)</td>
</tr>
<tr>
<td>Application Period</td>
<td>From Thursday, August 1, 2019 to Wednesday, August 7, 2019</td>
</tr>
<tr>
<td>Examination Date and Venue</td>
<td>Tuesday, August 27, 2019, at Okayama Prefectural University</td>
</tr>
<tr>
<td>Announcement of Successful Applicants</td>
<td>Friday, September 6, 2019</td>
</tr>
<tr>
<td>Enrollment Procedures</td>
<td>From Tuesday, December 10, 2019 to Thursday, December 12, 2019 Entrance Examination Admission Card, Affidavit, Certificate of Residence, Entrance Fee, and 1 photo described in 6(4) on page 11</td>
</tr>
<tr>
<td></td>
<td>Until Tuesday, March 31, 2020 Certificate of Graduation described in 6(4) on page 11</td>
</tr>
</tbody>
</table>

2. Fall Application

<table>
<thead>
<tr>
<th>Items</th>
<th>Schedule/Relevant Applicants/Examination Venue, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Consultation for Disabled Applicants</td>
<td>Until Friday, October 25, 2019</td>
</tr>
<tr>
<td>Submission of Application for Qualification Screening</td>
<td>Until Friday, November 1, 2019 [Applicants falling into Qualification (8), (9), or (10) on page 2]</td>
</tr>
<tr>
<td>Interview with the Master’s Course Instructor</td>
<td>Until Friday, November 1, 2019 (Except for the prospective graduate students of our school)</td>
</tr>
<tr>
<td>Application Period</td>
<td>From Friday, November 8, 2019 to Thursday, November 14, 2019</td>
</tr>
<tr>
<td>Examination Date and Venue</td>
<td>Thursday, November 28, 2019, at Okayama Prefectural University</td>
</tr>
<tr>
<td>Announcement of Successful Applicants</td>
<td>Friday, December 6, 2019</td>
</tr>
<tr>
<td>Enrollment Procedures</td>
<td>From Tuesday, December 10, 2019 to Thursday, December 12, 2019 Entrance Examination Admission Card, Affidavit, Certificate of Residence, Entrance Fee, and 1 photo described in 6(4) on page 11</td>
</tr>
<tr>
<td></td>
<td>Until Tuesday, March 31, 2020 Certificate of Graduation described in 6(4) on page 11</td>
</tr>
</tbody>
</table>
Table of Contents

Admission Policy of the Graduate School of Computer Science and Systems Engineering
1

I. Application Guidelines for the Graduate School of Computer Science and Systems Engineering
(Master’s Course), Okayama Prefectural University

1. Enrollment Capacity .. 2
2. Qualifications for Application .. 2
3. Application Procedures ... 3
4. Examination Schedule .. 7
5. Announcement of Successful Applicants ... 10
6. Enrollment Procedures ... 11
7. First-Year Payment .. 12
8. Degree Areas Written on the Master’s Diploma ... 13
9. Subject Registration for Adult Students ... 13
10. Other information .. 13

II. Invitation from the Graduate School of Computer Science and Systems Engineering
(Master’s Course), Okayama Prefectural University

1. Research Instructors and Major Research Themes ... 14
2. Lecture Content ... 19
3. Cross-Disciplinary Classes ... 25

Map to Examination Venue .. At the end of these guidelines
Okayama Prefectural University is scheduled to implement an online application system for the graduate school entrance examination for the 2020 academic year to improve convenience and efficiency.

Implementation of the online application system will enable applicants to apply 24 hours a day during the application period and will not require the paper-based Applicant Guidelines.

Please note that some documents such as the Certificate of Graduation (Prospective Graduation) and transcripts will still need to be sent by mail. Details will be posted on Okayama Prefectural University official website when available.

Following implementation of the online application system, the paper-based application form will no longer be accepted.

- If you do not have the required Internet environment, please contact the university staff shown on the back of the Application Guidelines.
Admission Policy of the Graduate School of Computer Science and Systems Engineering

The Graduate School of Computer Science and Systems Engineering strives to nurture specialists capable of applying information technology on a global scale and contributing to the sustainable growth of a highly advanced information society while achieving harmony between people and nature. We advance the educational goals pursued in the bachelor's programs in the Faculty of Computer Science and Systems Engineering through Master's and Doctorate Course of Systems Engineering. Therefore, the ideal students are:

- Individuals interested in acquiring knowledge and skill in information processing, information telecommunication, mechanical systems, and human engineering interested in contributing to our rapidly developing high-technology society.
- Individuals who wish to pursue their study of information engineering with the goal of integrating, developing and applying information technologies in their areas of specialization.
- Individuals interested in acquiring advanced and comprehensive technological knowledge that reaches beyond the existing framework interested in responding to the diversifying needs of our rapidly changing industrial society.

Admission Policy of the Master’s Course of Systems Engineering

The Master's Course of Systems Engineering strives to nurture a global perspective, rich humanity, a sense of ethics, judgment and communication ability in professional researchers and specialists to enable them to flexibly adjust themselves to changes in environments and industrial structures as they play key roles in supporting the growth of industrial society in a highly-advanced information society and engage in creative design for actual systems based on broad technical platforms. Therefore, the ideal students are:

- Individuals motivated to become highly proficient specialists and researchers in the electronics, information and communication engineering major, the mechanical and information systems engineering major, and the human information systems engineering major.
- Individuals aiming to become specialists with the desire to contribute to the growth of our highly advanced information society utilizing innovative conceptual powers and practical abilities.
- Individuals motivated to lead the vitalization of regional industries through their specialties.

We hope to see students who are motivated to become specialists, who have energy and dreams, and the ability to adjust themselves to structural changes in industrial society, to create new areas of engineering, and explore possibility and potential in the new century.
I. Application Guidelines of the Graduate School of Computer Science and Systems Engineering (Master’s Course), Okayama Prefectural University

1. Enrollment Capacity (people)

<table>
<thead>
<tr>
<th>Courses</th>
<th>Total Capacity</th>
<th>Enrollment Capacity</th>
<th>Examination Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Summer Application</td>
<td>Fall Application</td>
</tr>
<tr>
<td>Master’s Course of Systems</td>
<td>52</td>
<td>44</td>
<td>8</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Enrollment capacities include adult and overseas applicants.

2. Qualifications for Application

Applicants must fall under one of the following. Applicants for summer need to have a TOEIC test score result from a test held on April 1, 2016 or later.

(1) Have graduated from a university as specified in Article 83 of the School Education Act (Act No. 26 of 1947), or plan to graduate by March 31, 2020.

(2) Hold a bachelor’s degree as specified in Article 104, paragraph 4 of the School Education Act, or plan to hold said degree by March 31, 2020.

(3) Have completed a 16-year curriculum of school education in an overseas country, or plan to complete such a curriculum by March 31, 2020.

(4) Have completed a 16-year curriculum of school education of an overseas country through correspondence education conducted by a relevant overseas school while in Japan, or plan to complete such by March 31, 2020.

(5) Have completed the curriculum of an overseas educational facility in Japan recognized under the relevant overseas country’s school education system and designated separately by the Minister of Education, Culture, Sports, Science and Technology, or plan to complete such by March 31, 2020.

(6) Have completed after the date specified by the Minister of Education, Culture, Sports, Science and Technology a specialized program at a vocational school designated separately by the Minister of Education, Culture, Sports, Science and Technology, or plan to complete such by March 31, 2020.

(7) Have been designated by the Minister of Education, Culture, Sports, Science and Technology (Notification of Ministry of Education, No. 5 of 1953)

(8) Have been enrolled in a graduate school as specified by Article 102, paragraph 2 of the School Education Act and recognized by the president as possessing academic ability sufficient to receive education at a graduate school.

(9) Have been recognized by the president as possessing academic ability equal to or surpassing the level of a university graduate through individual examination for admission and who is or will have reached the age of 22 by March 31, 2020.

(10) Have attended a university for three years by or before March 31, 2020(including a school or program designated as equivalent by the Minister of Education, Culture, Sports, Science and Technology) and be recognized by the president as having earned specified credits with outstanding academic achievement.

(Notes) 1. Applicants wishing to apply for admission under Qualification (8), (9) or (10) will be screened before application is accepted. (See the subparagraph 3-(9) on page 6) In this case, however, applicants may be required to provide additional information regarding academic and job experience, etc. after the submission of the application.

2. Applicants enrolled in an advanced course at a junior college or technical college who wish to apply for admission under Application Qualification (2) must contact the Entrance Examination Team, Admissions Service Section at Okayama Prefectural University by no later than Thursday, July 25, 2019 for summer application, and by Friday, November 1, 2019 for fall application.
3. Application Procedures

(1) Application

Please place all the documents required for the application, including those downloaded from the online application system, in a “Kakugata 2-gou” envelope (332mmH x 240mmW) and submit in person or by simple registered express mail.

Applicants filing from outside of Japan are requested to provide a contact address in Japan to which the entrance examination admission card, letter of acceptance and other documents may be sent. (If no contact address in Japan is listed, the university will send documents to the listed address abroad.)

(2) Application Period

① Summer application

From Thursday, August 1, 2019 to Wednesday, August 7, 2019

(Notes)
1. Applications arriving after Thursday, August 8 by simplified registered express mail with a postmark* of Tuesday, August 6 or earlier will be accepted.
 *Japanese postmark. Applicants submitting documents from outside of Japan should allow sufficient time for the mail to reach the school by the application deadline.
2. Applications submitted in person are accepted between 9 a.m. and 4 p.m. Applications submitted in person will be accepted until 5 p.m. on the final day of the application period. (Saturday and Sunday are excluded.)

② Fall application

From Friday, November 8, 2019 to Thursday, November 14, 2019

(Notes)
1. Applications arriving after Friday, November 15 by simplified registered express mail with a postmark* of Wednesday, November 13 or earlier will be accepted.
 *Japanese postmark. Applicants submitting documents from outside of Japan should allow sufficient time for the mail to reach the school by the application deadline.
2. Applications submitted in person are accepted between 9 a.m. and 4 p.m. Applications submitted in person will be accepted until 5 p.m. on the final day of the application period. (Saturday and Sunday are excluded.)

(3) Where to send:

Entrance Examination Team, Admissions Service Section
Okayama Prefectural University
111 Kuboki, Soja-shi, Okayama Pref. 719-1197
(4) Application Documents

Please read the Online Application Guidelines (For Graduate Schools) provided separately for more details.

<table>
<thead>
<tr>
<th>Application Documents Required</th>
<th>Preparation Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>① Application Form</td>
<td>After completing the online application, please print out and submit the required documents in accordance with the Online Application Guidelines (For Graduate Schools) provided separately. List up to three preferred majors for the master’s course in the relevant column referring to the Overview of Majors in page 14. Write the name of the interviewer in the relevant column. This does not apply to applicants who graduate from Okayama Prefectural University.</td>
</tr>
<tr>
<td>② Certificate of Graduation (Prospective Graduation)</td>
<td>The certificate must be issued and sealed by the president or the dean of the relevant university. Applicants who have graduated or will graduate from our university are exempt.</td>
</tr>
<tr>
<td>③ Transcripts</td>
<td>Transcripts must be issued and sealed by the president or the dean of the relevant university. Submit the transcripts listing grades of all credits obtained while at the university.</td>
</tr>
<tr>
<td>④ Resume</td>
<td>Use the form provided. Please download the forms from the official Okayama Prefectural University website. Applicants who have completed or will complete the 15-year or 16-year curriculum of school education in an overseas country are required to include a complete academic history from entrance to elementary school. Applicants filing from outside of Japan are asked to provide a contact address in Japan as an alternate contact address other than listed above (e.g. an address in their home country).</td>
</tr>
<tr>
<td>⑤ Statement of Purpose for Research</td>
<td>Use the form provided. Write the first choice of major in the column for “Preferred Major.” Applicants who have graduated or will graduate from our university are exempt. Please download the forms from the official Okayama Prefectural University website.</td>
</tr>
</tbody>
</table>
| **⑥ Only for applicants required to submit** | (A) Applicants who wish to work while enrolled in a doctoral course are required to submit approval for application from their office or company. Please download the forms from the official Okayama Prefectural University website.
(B) Overseas applicants residing in Japan are required to submit a copy of the “certificate of residence” which includes status of residence and period of stay issued by the mayor of the municipal office. Overseas applicants that are not registered residents must submit a copy of the page in their passport that shows their name, birth date and sex.
(C) Applicants falling under Qualification (2) in 2 are required to submit documents according to the following classification:
(a) Applicants who possess a bachelor’s degree
 • Certification of bachelor’s degree issued by the National Institution for Academic Degrees and Quality Enhancement of higher Education
(b) Applicants who have applied to the National Institution for Academic Degrees and Quality Enhancement of higher Education for certification of bachelor’s degree
 • Acknowledgement of application for certification of bachelor’s degree issued by the National Institution for Academic Degrees and Quality Enhancement of higher Education |
Application Documents Required

Preparation Procedures

(c) Applicants enrolled in an advanced course at a technical college that meets the requirements set by the National Institution for Academic Degrees and Quality Enhancement of higher Education as stipulated by Article 6, paragraph 1 of the Degree Regulations (Ordinance of the Ministry of Education No. 9 of 1953)
 • Certificate of prospective completion of the relevant advanced course
 • Certificate issued by the president of the technical college at which the applicant is enrolled showing that the applicant is scheduled to receive the relevant degree

①TOEIC Test score
(Only for summer application)

Applicants are required to submit the highest TOEIC Test score or IP Test held on April 1, 2016 or later. Once the score is submitted, updating the score is not acceptable. The original and a copy of the “Official Score Certificate” of the TOEIC Test or the original and a copy of the “Score Report” of the IP Test are required to be submitted. The original will be returned to the applicants after confirmation by the university.

(Notes)
1. Among the documents required for the application, ④, ⑤ and ⑥(A) may be downloaded from the website. Use black ballpoint pen for all application forms. Cross out mistakes with a double line and write the correction next to them.
2. Leave the asterisked columns blank.
3. Attach Japanese translations of certificates (except those written in Japanese and English) to the documents required for application.
4. Applicants who wish to have original certificates returned should note this when submitting the application forms. The university will make copies and return original certificates.

(5) Examination Fee
1. Examination Fee
 30,000 yen
2. Payment Method
 Please submit payment for the examination fee by one of the methods shown below in accordance with the online application procedures.
 (1) At a convenience store
 (2) By credit card
 (3) By ATM (Pay-easy payment)/ Net banking
 * Fees for Various payments shall be borne by the applicant.
3. Payment Period
 (1) Summer application: From Thursday, August 1, 2019 to Wednesday, August 7, 2019
 (2) Fall application: From Friday, November 8, 2019 to Thursday, November 14, 2019
4. Refund of Examination Fee
 The Examination Fee shall not be refunded except in cases ① through ③ described below. The amount of refund shall be equivalent to the amount of the Examination Fee. Refund of Examination Fee is made upon request. Applicants who fall into one of the following categories and who wish a refund are required to contact the Entrance Examination Team, Admissions Service Section, Okayama Prefectural University by Friday, March 22, 2019 to complete the necessary procedures (Examination Fee Payment Certificate is required for the procedure). For Case ②, the Entrance Examination Team, Admissions Service Section, Okayama Prefectural University will contact the relevant individual.
 ① Applicants who paid the Examination Fee but did not submit the application documents
① Applicants who paid the Examination Fee but whose application was not accepted
② Applicants who have mistakenly paid the Examination Fee twice

5. Special Measures
Victims of the Great East Japan Earthquake (2011) and torrential rains in July 2018 are eligible for an entrance fee waiver. See our official website for details.

(6) Interview with the Master’s Course Instructor
In order to know about the concrete study contents of the Graduate School of Computer Science and Systems Engineering (Master’s Course), applicants other than prospective graduate students of our school must contact instructors, whom those applicants wish to receive guidance from, for interviews not later than Thursday, July 25, 2019 for summer application and Friday, November 1, 2019 for fall application.
See “Instructors and Major Research Themes” in page 14-18 to determine an instructor of the master’s course you wish to enter.

(7) Preliminary Consultation for Disabled Applicants
Disabled applicants requiring special consideration while taking the examination or following enrollment are asked to contact the Entrance Examination Team, Admissions Service Section, Okayama Prefectural University by Thursday, July 18, 2019 for summer application, and by Friday, October 25, 2019 for fall application.
Submit the application after receipt of notice of special measures for examinations and enrollment.

(8) Notes Regarding Application Procedures
① Ensure that all required documents are included in the application. Incomplete applications cannot be accepted.
② Acceptance may be invalidated at any time if any information provided in the application documents is found to have been falsified.
③ Changes to applications will not be allowed after submission. In the case of a change of name, address or telephone number, applicants should notify the Entrance Examination Team, Admissions Service Section, Okayama Prefectural University as soon as possible.
④ We will send an e-mail to the e-mail address you have registered with our online application system to inform you that you are allowed to print out your Admission Card after the application period. If you do not receive an e-mail by Thursday, August 22, 2019 for summer application, and by Friday, November 22, 2019 for fall application, please contact the Entrance Examination Team, Admissions Service Section, Okayama Prefectural University.
⑤ Application documents will not be returned.
⑥ Entrance examination admission cards, acceptance letters, etc. will be sent to the contact address specified by the applicant. Applicants filing from outside Japan are asked to specify a contact address in Japan.

(9) Review of Qualifications for Application
Applicants wishing to apply for admission under Application Qualification (8), (9), or (10) in 2 are asked to submit the below-listed documents to the Entrance Examination Team, Admissions Service Section, Okayama Prefectural University by no later than Thursday, July 25, 2019 for summer application, and by Friday, November 1, 2019 for fall application for review of the relevant qualification, which must be completed before the application can be accepted. The results of this review will be announced to the applicant.
Applicants are also asked to schedule interviews with an instructor of the master’s course they wish to enter before submitting their application.

<table>
<thead>
<tr>
<th>Documents Required</th>
<th>Applicants required to submit / Preparation Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>① Application Form for Review of Qualification for Application</td>
<td>Use the form provided and fill out completely.</td>
</tr>
<tr>
<td>② Certificate of</td>
<td>Applicants who fall under Application Qualification (9)</td>
</tr>
</tbody>
</table>
Graduation Certificate issued and sealed by the last school attended.

③ Transcripts
(A) Applicants who fall under Application Qualification (8)
Sealed transcripts issued by the director of the graduate school at which the applicant is enrolled.
(B) Applicants who fall under Application Qualification (9)
Sealed certificate issued by the last school that the applicant attended.
(C) Applicants who fall under Application Qualification (10)
Sealed transcripts listing the subjects, credits, grades, and any comments issued by the president or the dean of the university in which the applicant is enrolled.

④ Enrollment certificate
Applicants who fall under Application Qualification (8) or (10)
(Students enrolled at our university are exempt.)

⑤ Course handbook, student handbook, curriculum table, etc.
Applicants who fall under Application Qualification (10)
(Students enrolled at our university are exempt.)
Written details regarding credits required for graduation, course descriptions, content of lectures held at the faculty in which the applicant is enrolled.

⑥ Statement of research performance
Applicants who fall under Application Qualification (9)
The form provided is used to describe what applicants have learned, research themes, and job experience, etc. after graduation from the highest level of schooling.

(Notes)
1. The “form provided” is not included in these guidelines. Please contact the Entrance Examination Team, Admissions Service Section, Okayama Prefectural University.
2. Should the applicant’s application qualifications be approved, application document ② and ③ may be omitted.
3. Applicants falling under Application Qualification (10) must meet the following requirements:
 ① Acquire the required credits for graduation in all general education by the end of the 2nd year
 ② Acquire all 1st and 2nd year core subject credits by the end of the 2nd year
 ③ Acquire a grade of 80% or higher in 80% or more of the required courses taken by the end of the 2nd year
 ④ Anticipate having greater than the number of credits normally acquired by the end of the 3rd year (including required courses)

However, applicants who fall into either of the following categories as of Wednesday, April 1, 2020 will be disqualified even after passing the entrance examination and completing the enrollment procedures:
 ① Applicants who fail to achieve grades of 80% or more in 80% of the courses taken by the end of the 3rd year.
 ② When the actual number of credits acquired by the end of the 3rd year is less than the number of credits normally acquired.

Students enrolling under Application Qualification (10) withdraw from their universities before graduation. For this reason they lose eligibility for national examinations that require a certificate of university graduation.

4. Examination Schedule
(1) For Summer Application
 ① Examination Date

| Exam Date | Tuesday, August 27, 2019 |
2 Time Table

<table>
<thead>
<tr>
<th>Master's Course</th>
<th>Timetable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10:00</td>
</tr>
<tr>
<td>Master's Course of Systems Engineering</td>
<td>Mathematics*</td>
</tr>
</tbody>
</table>

Note: Mathematics includes linear algebra and calculus (differential equations).

3 Selection
Selection for admission is based on TOEIC Test, comprehensive evaluation of academic proficiency examination, interview, and submitted documents.

4 Allocation of Points

<table>
<thead>
<tr>
<th>Master's Course</th>
<th>Name of Subject</th>
<th>Points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master’s Course of Systems Engineering</td>
<td>TOEIC Test (TOEIC Test or IP Test)*</td>
<td>100</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>Academic Proficiency Exam (Mathematics)</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interview / document screening</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

*How to convert TOEIC Test score
TOEIC score/730×100 (100 when the TOEIC score is 730 or higher)
(Note) Applicants who do not take all subjects, TOEIC Test, the academic proficiency exam (Mathematics), or the interview, will be excluded from selection.

(2) For Fall Application

1 Examination Date

| Exam Date | Thursday, November 28, 2019 |

2 Time Table

<table>
<thead>
<tr>
<th>Master's Course</th>
<th>Timetable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10:00 a.m.</td>
</tr>
<tr>
<td>Master’s Course of Systems Engineering</td>
<td>Interview (Oral examination for English, Mathematics, and specialty included.)</td>
</tr>
</tbody>
</table>

Note: Depending on the number of applicants, interviews may also be scheduled in the afternoon. Please check the time of your interview on the Entrance Examination Admission Card.
3 Selection
Selection for admission is based on a comprehensive evaluation of interview (Oral examination for English, Mathematics, and specialty included) and submitted documents.

4 Allocation of Points

<table>
<thead>
<tr>
<th>Master’s Course</th>
<th>Name of Subject</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master’s Course of Systems Engineering</td>
<td>Interview (document screening included)</td>
<td>200</td>
</tr>
</tbody>
</table>

(3) Examination Venue (Common)
Okayama Prefectural University
111 Kuboki, Soja-shi, Okayama Pref. 719-1197

(4) Precautions for Examination (Common)
1. Applicants should be seated in the designated examination room (or interview waiting room) by 9:40 a.m.
 Room information will be posted at the venue on the day of the examination.
2. Applicants are permitted to enter the designated academic proficiency examination/interview room up to 30 minutes after the language test/interview has started. However, the examination time will not be extended.
3. Applicants are asked to place the Entrance Examination Admission Card (printed out from the online application system) according to the instructions given by proctors. Applicants who have misplaced or forgotten their Entrance Examination Admission Card should obtain a temporary admission card at the Examination Headquarters without delay.
 The entrance examination admission card is necessary for the enrollment procedure. Please keep it even after the examination.
4. Entrance Examination Admission Cards must be placed on the desk during the examination. The only other items allowed on desks are pencils (mechanical pencils), an eraser, a pencil sharpener (electric/battery-powered sharpeners prohibited), a watch (must have a silent second hand), glasses, a handkerchief, tissues (without package), and eye drops. Proctors may confiscate items not listed above until the end of the examination.
5. Electronic devices, including mobile or smart phones, and wearables, should be turned off before entering the examination room (or interview waiting room). Please ensure that watch alarm functions have been turned off.
6. Proctors will check applicants. Proctors may ask applicants to temporarily remove masks and hats for identification.
7. Applicants are prohibited from borrowing any items from other applicants in the examination room (or interview waiting room).
8. Reading material (textbooks and notes, but excluding electronic books) and beverages are allowed during wait times; however, applicants are required to obtain permission from a proctor before removing reading material or containers from their bags.
9. Applicants found to be engaging in dishonest behavior will be asked to leave the room. Applicants asked to leave cannot retake any of the examinations, and all examination results will be invalidated.

Dishonest behaviors include those listed below:
- Intentionally providing false information on the Application Form, Entrance Examination Admission Card, or Answer Sheet.
- Cheating on the examination.
- Providing answers to other applicants or helping other applicants to cheat.
Behaviors shown below may be deemed dishonest. Applicants who do not follow instructions or who are deemed to have engaged in dishonest behavior will be treated as above.

| • Leaving the examination room with examination questions during the examination period. |
| • Leaving the examination room with the examination answer sheet during the examination period. |
| • Opening the examination questions or answering before being told to start answering. |
| • Using electronic devices, including mobile or smart phones and wearables, during the examination period. |
| • Continuing to write after being told to stop. |
| • Wear or holding electrical devices, including mobile or smart phones and wearables, without permission during the examination period. |
| • Interfering with others during the examination by, for example, not disabling the sound of mobile phones and watches (ring tone, alarm, vibration, etc.). |
| • Making false announcements regarding the examination to manipulate the situation to the advantage of themselves or other applicants. |
| • Engaging in mischievous behavior directed at other applicants at the examination venue. |
| • Disregarding instructions given by proctors. |
| • Engaging in behaviors that may undermine the fairness of the examination. |

5. Announcement of Successful Applicants

(1) Announcement Date

| ① For Summer Application |
| 10 a.m., Friday, September 6, 2019 |

| ② For Fall Application |
| 10 a.m., Friday, December 6, 2019 |

(2) Announcement Procedures

The ID numbers of successful applicants will be posted in front of the West Entrance of the Okayama Prefectural University Administrative Building. At the same time, ID numbers are uploaded to our website (see the URLs on the back cover.).

In addition, successful applicants will receive an official letter of acceptance.

We regret that the school is unable to accept inquiries via telegram, telephone, mail, e-mail, or etc.
6. Enrollment Procedures

(1) Enrollment Steps
Submit the application documents described in paragraph (4) below by simplified registered express mail, or in person.

(2) Enrollment Procedure Period
From Tuesday, December 10, 2019 to Thursday, December 12, 2019 (Due no later than the last day)
Documents may be submitted in person between 9 a.m. and 4 p.m. However, documents will be accepted until 5 p.m. on the final day of the enrollment period.

(3) Where to Complete Enrollment Procedures
Entrance Examination Team, Admissions Service Section
Okayama Prefectural University
111 Kuboki, Soja-shi, Okayama Pref. 719-1197

(4) Documents Required for Enrollment

<table>
<thead>
<tr>
<th>Documents Required for Enrollment</th>
<th>Preparation Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>① Entrance Examination Admission Card</td>
<td>Fill out the form provided and affix your seal or signature.</td>
</tr>
<tr>
<td>② Affidavit</td>
<td>“Okayama Prefecture Residents” in 7-(1)・① on page 13 are required to submit this certificate. Fill out the form provided (not the form used by the local government) and have it approved by your relevant local government office.</td>
</tr>
<tr>
<td>③ Certificate of Residence (Application for Certification)</td>
<td></td>
</tr>
<tr>
<td>④ Entrance Fee</td>
<td>Applicants are required to remit the amount listed in 7-(1) on page 13. Payment instructions will be enclosed with the letter of acceptance.</td>
</tr>
<tr>
<td>⑤ 1 photo</td>
<td>The master’s course and the applicant's name should be written on the reverse side of a 4cmH x 3cmW color photo. (front upper body, no hats, and no background scenery)</td>
</tr>
</tbody>
</table>
| ⑥ Certificate of Graduation (Diploma),etc. | Required for applicants who take the examination prior to the graduation and who fall under either of the following qualifications (Applicants from our university are exempt.)
 - Qualification (1) to (6): Certificate of graduation or diploma
 - Qualification (10): Transcripts |
| ⑦ Others | Applicants falling under Qualification (8), (9), or (10) in 2 may be required to submit documents regarding post-application study, job experience, etc. |

(Notes)
1. The “Form provided” will be enclosed with the letter of acceptance.
2. Certificate of graduation, etc. described in ⑥ are used to verify the applicant’s qualification for admission (Application Qualifications (1) to (6), and (10) shown in 2. Relevant applicants must submit this by Tuesday, March 31, 2020.

(5) Enrollment Procedure Precautions
① Enrollment procedures must be completed by the specified date. Applicants who fail to complete
the procedure by the specified date will be deemed to have declined enrollment.
②Incomplete enrollment documents, including examination fee payment certificate, or documents delivered after the enrollment procedure period will not be accepted.
③Enrollment documents will not be returned.
①Applicants who lack the relevant qualifications as of Wednesday, April 1, 2020 will not be admitted.

7. First-Year Payment

(1) Entrance Fee
Payment of the entrance fee is required at the time of enrollment. Instructions will be included with the letter of acceptance.

①Okayama Prefecture Residents 188,000 yen
②Non-residents 282,000 yen

(Notes)
1. Okayama Prefecture Residents are defined as either:
 ①Individuals residing in Okayama Prefecture since April 1, 2019.
 ②Individuals whose spouse or first-degree relative has resided in Okayama Prefecture since April 1, 2019.
2. Residency must be verified with a Certificate of Residence issued by the mayor of the relevant local government office.
 Individuals subject to Note 1-② or who have moved within Okayama Prefecture after April 2, 2019 must contact the Entrance Examination Team, Admission Service Section, Okayama Prefectural University to submit additional documents.
3. Admission fee is subject to change. Revised admission fees shall apply from the date of revision.
4. Entrance fees shall not be refunded except in cases ① through ③ described below. The amount of refund shall be equivalent to the amount of the entrance fee. Refund of the entrance fee is made upon request. Individuals who fall into one of the following categories and wish a refund are asked to contact the Admissions Service Section, Okayama Prefectural University by Monday, March 23, 2020 to complete the required procedures (Entrance Fee Payment Certificate is required). For Case ②, the Entrance Examination Team, Admissions Service Section, Okayama Prefectural University will contact the relevant individual.
 ①Applicants who paid the entrance fees but did not submit the enrollment documents
 ②Applicants who paid the entrance fees but did not complete the enrollment procedures
 ③Applicants who mistakenly paid the wrong amount for the entrance fee

(2) Tuition
①Amount (Yearly amount) 535,800 yen
②Payment Procedures Payment in two installments for the first and second semesters after enrollment
③Payment Period 1st semester: the end of May/2nd semester: the end of Oct.
(Note) The tuition is paid by account transfer. Please follow the necessary procedures at the time of enrollment. Tuition paid will not be refunded. Tuition is subject to change. Revised tuition shall apply from the date of revision.

(3) Supporter’s Association Fee
①Amount 44,000 yen (20,000 yen for registration fee and 24,000 yen for membership fee (for two years))
(Note) Graduates (and prospective graduate students) from our university need not pay registration, but are required to pay the membership fee (for two years).
②Payment Procedures Please pay the above-mentioned amount in a lump sum by
bank transfer at the time of enrollment. The amount is refundable if enrollment is declined.

(4) Alumni Association Fee

① Amount
10,000 yen (Registration)
(Note) Graduates (and prospective graduate students) from our university need not pay the alumni association fee.

② Payment Procedures
Please pay the above-mentioned amount in a lump sum by bank transfer at the time of enrollment. The amount is refundable if enrollment is declined.
(Note) Applicants will receive bills for the supporter’s association and alumni association fees along with their letter of acceptance.

8. Degree Areas Written on the Master’s Diploma

Upon satisfactory completion of the requirements for graduation from the Graduate School of Computer Science and Systems Engineering at Okayama Prefectural University, students are awarded a master’s degree. The degree area written on the master’s diploma is “Engineering.”

9. Subject Registration for Adult Students

In compliance with Article 15 of the Graduate Schools Establishment Standard (Ministry of Education Ordinance No. 28 of 1974), the university has established a “Register Extension System” that allows students to extend their studies for a specified period beyond the standard course term in order to cope with the difficulties often faced by working adults. Those who wish to take advantage of the Register Extension System must apply for approval from the university. After approval has been granted, however, students are not able to modify the specified period, withdraw from the system, or apply for a reduction/exemption of tuition, or delay of payment. Applicants are, therefore, strongly advised to consult with a faculty instructor before applying for the Register Extension System.

10. Other information

(1) Consultation and advice on scholarships and tuition exemptions are available following enrollment. Please contact the Student Support Team, Admission Service Section, Okayama Prefectural University.

(2) The handling of personal information provided by applicants during the selection process is subject to the Okayama Prefecture Privacy Protection Ordinance (No. 3 of Okayama Prefecture Ordinance 2002). Personal information provided by applicants is used as follows:
① Personal information provided by applicants during the application process is used to facilitate the selection process (application processing, screening), announcement of successful applicants, and enrollment procedures. In addition, personal information is used to examine and improve the selection process and program offerings. However, all information presented in explanations or support of said examination or improvements will be processed to prevent the identification of individuals.
② Personal information provided during the enrollment process is used to facilitate admission and study (school registration, study guidance, etc.), student support (health care, applications for tuition reduction and exemptions, applications for scholarships, assistance in job searches, etc.), and the collection of fees.
③ Personal information provided by applicants who have passed the entrance examination is used by the alumni and supporters’ associations to provide information related to their official activities.
④ A part of the above-listed duties may be entrusted to subcontractors. To ensure that said subcontractors are able to fulfill their duties, they are provided with personal information to the extent required.
II. Invitation from the Graduate School of Computer Science and Systems Engineering
(Master’s Course)

The Graduate School of Computer Science and Systems Engineering includes the Systems Engineering Major. In this major, the electronics, information, and communication engineering major, the machine information systems engineering major, and the human information systems engineering major are provided depending on the educational study major. Students will not only study the major but also develop broad global perspective and high practical skills through active discussions and academic guidance provided by multiple faculties so as to be able to cope with rapid development of information engineering and related engineering majors.

The electronics, information, and communication engineering major handles technology of three majors, the information processing engineering, the information and communication engineering, and the information and electronics engineering, which are required for developing and spreading the next-generation ICT technology.

The machine information systems engineering major handles technology of three majors, the software system engineering, the intelligent interface system engineering, and the machine and energy system engineering, which are required for developing and spreading the next-generation technology in which the information engineering and the mechanical engineering are merged.

The human information systems engineering major handles technology of three majors, the intelligent system, the sports and human dynamics, and the human support engineering, which are required for developing and spreading the next-generation technology related to human life support.

We are looking for individuals with a solid academic foundation and the ability to think logically who have a strong interest in acquiring knowledge and skills in specialized areas.

1. Instructors and Major Research Themes

<table>
<thead>
<tr>
<th>Major</th>
<th>Title</th>
<th>Name</th>
<th>Specialty</th>
<th>Research Content</th>
</tr>
</thead>
</table>
| Electronics, Information and Communication Engineering Major | Prof. | Akihiro Kanagawa | Mathematical Information Science / Management Science / OR | (1) Deep machine learning and image processing
(2) Information statistics and application to industrial management
(3) Combinatorial optimization problems and metaheuristics |
| | | Naoto Iwahashi | Intelligent Robotics / Machine Learning | (1) Multimodal dialogue ability learning by robots
(2) Human-robot interaction
(3) Object concept learning |
| | | Katsumi Sakakibara | Communication and Network Engineering | (1) Algebraic error correcting coding theory
(2) Error control protocols for communication systems
(3) Random access protocols for mobile/wireless communication systems |
| | | Kensuke Okubo | Microwave and Millimeter wave Engineering | (1) Analysis of electromagnetic waves transmitting through microwave circuits, including magnetic substances
(2) Microwave and millimeter wave circuit and device using magnetic material and metamaterial.
(3) High-frequency integrated circuits for mobile telecommunication |
<table>
<thead>
<tr>
<th>Major</th>
<th>Title</th>
<th>Name</th>
<th>Specialty</th>
<th>Research Content</th>
</tr>
</thead>
</table>
| Electronics, Information, and Communication Engineering Major | | Hiroshi Inai | Communication and Network Engineering | (1) Prediction of telecommunication system performance
(2) High-speed, large-scale information network design
(3) Distributed computing through information networks |
| | | Nobuyuki Ito | Analog Integrated Circuit/ Device Modeling | (1) High-frequency analog integrated circuits
(2) High-frequency device modeling
(3) High-frequency integrated circuits for wireless telecommunication |
| | | Yasunori Tokuda | Quantum Optoelectronics/ Semiconductor Physics | (1) High-performance and new function semiconductor devices using quantum effects
(2) Research for and application of novel physics in metamaterials |
| | | Koji Sueoka | Applied Physics and Crystal Engineering | (1) LSI semiconductor substrates utilizing molecular simulation
(2) Search for new materials through first-principles calculation
(3) Fundamental research on physics of semiconductor surfaces and interface |
| Associate Prof. | | Hironori Takimoto | Perceptual Information Processing, Image Engineering | (1) Modeling of perceptual information processing
(2) Advancement of human sensing
(3) Development of image processing technology based on visual and perceptual characteristics |
| | | Takeo Kunishima | Web Informatics/ Data Engineering | (1) Structured document and electronic book processing technology
(2) System architecture for web applications
(3) Agile software development methods |
| | | Mitsuyoshi Kishihara | Microwave and Millimeter-wave Engineering | (1) Microwave and millimeter-wave passive circuit elements
(2) Microfabrication of RF circuits
(3) Development of microwave energy application devices |
| | | Hideaki Wakabayashi | Electromagnetic Theory/ Antenna Engineering | (1) A fundamental study of analytical theory and computational method for electromagnetic scattering and diffraction problems
(2) A study on clarification and application of light and electromagnetic waves phenomenon caused by periodic and metamaterial structures |
| | | Takayuki Morishita | Digital Integrated Circuit and Processors | (1) General-purpose processors capable of dynamic reconfiguration
(2) C compilers for processors capable of dynamic reconfiguration |
<table>
<thead>
<tr>
<th>Major</th>
<th>Title</th>
<th>Name</th>
<th>Specialty</th>
<th>Research Content</th>
</tr>
</thead>
</table>
| Electronics, Information, and Communication Engineering Major | Associate Prof. | Takehiro Fukushima | Applied Optics/ Quantum Optical Engineering | (1) Two-dimensional micro cavity lasers
(2) Laser chaos and its applications
(3) Semiconductor lasers and related devices |
| | | Toyokazu Sakamoto | Gradient-Index Optics/ System Engineering | (1) Imaging theory of gradient-index optical systems and its application to optical devices
(2) Bistability and chaos in nonlinear optical systems
(3) 2D and 3D packing issues |
| Machine Information Systems Engineering Major | Prof. | Genichiro Kikui | Natural Language Processing/ Information & Searching Support/ Knowledge Processing | (1) Understanding and application of natural language
(2) Natural language generation and the application
(3) Knowledge representation and inference mechanisms |
| | | Kazutami Arimoto | Computer Engineering/ Integrated Systems Engineering | (1) Extremely low power embedded systems
(2) New function computing |
| | | Tomio Watanabe | Human Interface | (1) Embodied communication systems for mind connection
(2) Embodied interaction robots
(3) Embodied communication technology
(4) Generation and control technology of human-entrained embodied media |
| | | Xin Xin | Robotics/ Control Engineering | (1) Design and analysis of underactuated robotics control systems
(2) Stability analysis and control design for electric power systems
(3) Analysis and control of complex systems |
| | | Koichi Ozaki | Mechanics of Materials/ Thermal Engineering | (1) Thermal and mechanical properties of porous medium and their application
(2) Analysis of casting processes utilizing numerical simulations
(3) Light metal strength properties |
| | Associate Prof. | Kenichi Mitani | Functional Analysis | (1) Geometric structure of Banach space and application
(2) Norm inequalities of Banach space |
<table>
<thead>
<tr>
<th>Major</th>
<th>Title</th>
<th>Name</th>
<th>Specialty</th>
<th>Research Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Information Systems Engineering</td>
<td></td>
<td>Associate Prof.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Major</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | | Yasuhiro Tajima | Artificial Intelligence/ | (1) Computational learning theory
| | | | Theoretical Computer Science | (2) Text mining
| | | | | (3) AI for games |
| | | Tomoyuki Yokogawa | Dependable System/ Software | (1) Study of enhancement of
| | | | Engineering | reliability of software based on the formal methods
| | | | | (2) Study of hardware design automatic verification using the model inspection |
| | | Yutaka Ishii | Human Interface | (1) Communication support via Embodied avatars
| | | | | (2) Human agent interactions |
| | | Taiga Yamasaki | Biotechnology/ Control Engineering | (1) Human and robot motion control
| | | | | (2) Modeling of human nerve, muscle, and skeletal systems and motion mechanisms |
| | | Tadao Fukuta | Materials Processing Engineering/ | (1) Strength property evaluation for
| | | | Computational Dynamics | heat-processed materials
| | | | | (2) Clarification of material strengthening mechanisms utilizing molecular simulations
| | | | | (3) Strength properties of cast light metals |
| | | Yoshitaka Tokunaga | Electrical Engineering | (1) Estimation with analytical model of electric power equipment
| | | | | (2) Electrical characteristics of home appliances |
| Human Information Systems Engineering | | Prof. | | |
| Engineering Major | | Yoichiro Sato | Computer Engineering/ Image | (1) High performance and reliability of large-scale digital systems
| | | | Engineering | (2) High-functional image processing accelerators
| | | | | (3) High performance of medical equipment
| | | | | (4) High-speed conversion methods for high-resolution moving images |
| | | Naoto Haruki | Heat Transfer Engineering | (1) Heat energy transport technology with high efficiency & low environmental load
| | | | | (2) Heat storage and radiation technology for comfortable spaces |
| | | Masaki Hokari | Instrumentation Engineering/ Sports | (1) Sports exercise measurement and quantitative evaluation of skills
| | | | Engineering | (2) Home security systems |

- 17 -
<table>
<thead>
<tr>
<th>Major</th>
<th>Title</th>
<th>Name</th>
<th>Specialty</th>
<th>Research Content</th>
</tr>
</thead>
</table>
| Human Information Systems Engineering Major | Prof. | Makoto Ayabe | Exercise Physiology/Applied Health Sciences | (1) Physical and sports activities contributing to the improvement of physical and mental health
(2) Development and evaluation of safe and effective exercise prescription systems and devices
(3) Development of quantitative methods of volume and quality of daily living and sports activities |
| | | Teruaki Ito | Kansei Information Engineering, Collaborative Engineering | (1) Human interface using kansei information
(2) Collaborative support for harmonizing users and systems |
| | | Hitoshi Yamauchi | Image Engineering | (1) Recognition of articles and movements from image information
(2) Image data processing |
| | | Seiji Saito | Human Engineering/Exercise Physiology | (1) Comfortable designs for footwear
(2) Usability of commodities |
| | | Shinichiro Ota | Dynamics of Machinery/Human Engineering | (1) Study of vibration and ride quality improvement of vehicles
(2) Study of theoretic model which enables dynamic behavior under vibrating environment
(3) Study and development of functional cushions which are able to control mechanical property |
<table>
<thead>
<tr>
<th>Majors</th>
<th>Name of Class</th>
<th>Class Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics, Information,</td>
<td>Advanced Probability and Statistics</td>
<td>This class focuses on probability and statistics as mathematical sciences employed in the summarization and analysis of information. Class content includes the central limit theorem and its applications, Nyman-Pearson lemma and the most powerful test, small sample theory, maximum likelihood estimator theory, Bayesian statistics, multivariate analysis, and factor analysis. It also shows examples of application to operations research.</td>
</tr>
<tr>
<td>and Communication Engineering</td>
<td>(Prof. Akihiro Kanagawa)</td>
<td></td>
</tr>
<tr>
<td>Major</td>
<td>Perceptual Information Processing</td>
<td>People acquire information using their senses and perception. This class focuses on major visual information processing to help students understand not only visual mechanisms, but also information processing in visual systems. The class also explains human sensing technology using a wide variety of sensors in human-oriented sensing technology. Using application examples beyond the general concepts of perceptual information processing, this class cultivates practical ability.</td>
</tr>
<tr>
<td></td>
<td>(Associate Prof. Hironori Takimoto)</td>
<td></td>
</tr>
<tr>
<td>Advanced Artificial Intelligence</td>
<td>Advanced Artificial Intelligence</td>
<td>Artificial intelligence techniques based on machine learning and pattern recognition have been rapidly making progress based on the development of computational algorithms and the performance improvement of computers in recent years. This class introduces a unified point of view based on Bayesian theory, which provides a better understanding of the various theories and techniques of machine learning and pattern recognition.</td>
</tr>
<tr>
<td>(Prof. Naoto Iwahashi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formal Language Theory</td>
<td>Formal Language Theory</td>
<td>This class focuses on important matters in the application of language and automaton theory to information sciences. Students learn finite automaton, regular language, context-free language, and pushdown automaton.</td>
</tr>
<tr>
<td>(Associate Prof. Takeo Kunishima)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Networks, Advanced</td>
<td>Information Networks, Advanced</td>
<td>This class helps students learn the details of telecommunication devices composing information networks and control methods through specific examples. Students explore problems in and future vision for the most advanced technology through presentations and discussions.</td>
</tr>
<tr>
<td>(Prof. Hiroshi Inai)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electromagnetic-wave System</td>
<td>Electromagnetic-wave System Engineering</td>
<td>This class focuses on microwave and millimeter wave through actual examples, the characteristics of electromagnetic waves that transmit anisotropic and artificial medium called meta-material, and the functional elements of microwave and millimeter wave utilizing the characteristics of electromagnetic waves.</td>
</tr>
<tr>
<td>Engineering</td>
<td>(Prof. Kensuke Okubo)</td>
<td></td>
</tr>
<tr>
<td>Advanced Coding Theory</td>
<td>Advanced Coding Theory</td>
<td>This class focuses on error correction code theory, which is essential to improving the reliability of digital telecommunication systems, and provides information on the theoretical aspects of error correction codes utilizing Galois theory and practical aspects of Reed-Solomon codes used in compact discs and mobile telecommunications.</td>
</tr>
<tr>
<td>(Prof. Katsumi Sakakibara)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antennas and Propagation Engineering</td>
<td>Antennas and Propagation Engineering</td>
<td>This class focuses on antenna operating principles, which play an important role in wireless telecommunications, and introduces characteristics and calculations for a wide range of antennas. Based on actual examples of telecommunications and broadcasting, this class helps students to learn the characteristics of radio waves and transmission via frequency as well as the effective use of antennas.</td>
</tr>
<tr>
<td>(Associate Prof. Hideaki Wakabayashi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Majors</td>
<td>Name of Class (Instructors)</td>
<td>Class Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Electronics, Information, and Communication Engineering Major</td>
<td>Computational Electromagnetics (Associate Prof. Mitsuyoshi Kishihara)</td>
<td>This class focuses on a wide range of numerical algorithms based on Maxwell’s equations to solve various problems in electromagnetic wave circuits. It also introduces the characteristics of electromagnetic wave circuit frequency and examples of the evaluation of electromagnetic wave transmission characteristics utilizing simplified computer simulations.</td>
</tr>
<tr>
<td></td>
<td>Information Security (Takuya Kusaka*)</td>
<td>This class focuses on information security frameworks and component technology such as encryption, electronic authentication, and electronic signatures that are applied to information security frameworks. This class also provides students opportunities to learn access control technologies and other security measures through actual examples of security risks such as vulnerability in computer software, computer viruses, worms, and unauthorized computer access associated with computer software vulnerability.</td>
</tr>
<tr>
<td></td>
<td>Advanced Semiconductor Devices (Prof. Yasunori Tokuda)</td>
<td>This class provides basic knowledge on semiconductor materials and systematic information on a wide variety of semiconductor devices, from electronic to optical devices, from silicon to compound devices, and from commercially available devices to devices under development.</td>
</tr>
<tr>
<td></td>
<td>Advanced analog integrated circuit design (Prof. Nobuyuki Ito)</td>
<td>Nanoscale MOSFET frequency characteristics have been improved and signal processing has been achieved for GHz bandwidth, which is used for wireless information telecommunication. However, MOSFET is significantly dissociated from scaling rules, and its nonideality is obvious. This class helps students to learn the various characteristics of nanoscale MOSFET, device modeling, and circuit elements design technology required to realize analog integrated circuits and RF CMOS circuits utilizing nanoscale MOSFET.</td>
</tr>
<tr>
<td></td>
<td>VLSI Parallel Computer Architecture (Associate Prof. Takayuki Morishita)</td>
<td>This class helps students to deepen their understanding of the basics of processor architecture design utilizing large-size integrated circuits for parallelism, principles and limitation of instruction-level parallelism, multiple processor processing methods, and management mechanisms for memory through an examination of the literature.</td>
</tr>
<tr>
<td></td>
<td>Light-wave electronics (Associate Prof. Toyokazu Sakamoto)</td>
<td>Micro optical elements such as gradient-index rod lenses are the basis of extremely important key devices for optical communications as well as objective lenses for optical discs. This class focuses on important matters associated with geometrical optics such as the basics of optical design, including analytical methods and the physical meaning of light behaviors in gradient-index media.</td>
</tr>
<tr>
<td></td>
<td>Optical Devices Engineering (Associate Prof. Takehiro Fukushima)</td>
<td>This class provides information on semiconductor lasers and optical fibers that play important roles in optical communication and optical information processing systems, including basic characteristics, analytical methods, fabrication technology, methods for the evaluation of characteristics, and applied fields. This class also introduces research on micro cavity lasers and other advanced optical devices.</td>
</tr>
<tr>
<td></td>
<td>Computational physics (Prof. Koji Sueoka)</td>
<td>This class focuses on the essential differences among metals, insulators, and semiconductors based on electronic structures of solid materials. It also provides information on the prediction and control of material properties utilizing the first-principles calculation.</td>
</tr>
<tr>
<td>Majors</td>
<td>Name of Class (Instructors)</td>
<td>Class Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Machine Information Systems Engineering Major</td>
<td>Applied Analysis (Associate Prof. Kenichi Mitani)</td>
<td>This class provides opportunities for students to learn functional analysis developed from classical analysis through the basic theories of Banach and Hilbert spaces. It also helps students understand how abstract theories on functional analysis can be used effectively in basic theories to solve specific problems.</td>
</tr>
<tr>
<td></td>
<td>Applied Algebra (Prof. Hiroaki Komatsu)</td>
<td>The purpose of computer algebra is the effective execution of mathematical calculations using computers. Its range of application is expanding to higher mathematics, including ring theory and algebraic geometry. This class helps students learn the basics of such higher mathematics, including a wide range of algebraic structures (group, ring, field) and their basic calculations.</td>
</tr>
<tr>
<td></td>
<td>Advanced Vibration and Wave Theory (Associate Prof. Masami Ichikawa)</td>
<td>This class helps students understand the theory of continuum vibration and wave motion phenomena, and analytical methods, including numerical solutions with an emphasis on the relationship with fluid mechanics, material mechanics, and elasticity theory.</td>
</tr>
<tr>
<td></td>
<td>Natural Language Engineering (Prof. Genichiro Kikui)</td>
<td>Language is the most basic means of communication among humans. This class focuses on the Japanese language, including the structure and concept of meaning, and basic theories and techniques in the perception of meaning related to computers.</td>
</tr>
<tr>
<td></td>
<td>Machine Learning (Associate Prof. Yasuhiro Tajima)</td>
<td>This class focuses on mechanisms through which machines acquire knowledge, the field of machine learning. Students research and make presentations on algorithms used to extract knowledge from large amounts of text (text mining) and knowledge processing with uncertainty, including methods and examples of applications, to deepen their understanding.</td>
</tr>
<tr>
<td></td>
<td>Embedded System Design (Prof. Kazutami Arimoto)</td>
<td>In order to realize required performance under limited boundary conditions, embedded systems must include requirement and target specification design as well as schematic and functional design, and this requires cooperative design between hardware and software. This class focuses on schematic design theory particular to the above-mentioned embedded systems, introduces many examples that deepen inductive understanding, and explains design methods, including new areas.</td>
</tr>
<tr>
<td></td>
<td>System Verification (Associate Prof. Tomoyuki Yokogawa)</td>
<td>The increasing size and complexity of both software and hardware systems requires system verification to reduce development costs, and improve product quality and reliability. This class is designed to familiarize students with effective and efficient system verification methodology.</td>
</tr>
<tr>
<td></td>
<td>Advanced Human Interface (Prof. Tomio Watanabe)</td>
<td>This class focuses on human interface for the design of information input and output equipment suitable for human communication characteristics centering on interactions between humans and computers, including humans and computers as interaction elements, and system technology for interactions.</td>
</tr>
<tr>
<td></td>
<td>Human-Agent Interaction (Associate Prof. Yutaka Ishii)</td>
<td>This class helps students understand interaction design principles and methodologies for the unified handling of interactions between humans and personified agents, humans and robots, and humans and humans. It provides advanced knowledge and findings, and provides students opportunities to engage in surveys, presentations, and discussions on the most advanced research in HAI field.</td>
</tr>
<tr>
<td>Majors</td>
<td>Name of Class (Instructors)</td>
<td>Class Description</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Machine Information Systems Engineering Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Control Engineering (Prof. Xin Xin)</td>
<td>Multi-agent systems consist of elements capable of autonomous decision-making. This class introduces multi-agent system control, and its applications in society through examples of sensor networks and smart grids.</td>
</tr>
<tr>
<td></td>
<td>Biological Motor Control (Associate Prof. Taiga Yamasaki)</td>
<td>Developing intelligent robotic systems has close relationships with understanding the motor control mechanisms underlying human and other biological systems from engineering viewpoint. This class helps students to understand the computational theory common to these control systems.</td>
</tr>
<tr>
<td></td>
<td>Simulation Analysis (Prof. Koichi Ozaki)</td>
<td>This class helps students to understand methods of establishing mathematical models required for the designing of machine structures and elements, numerical analysis by computers, and the basics of seamless combination between CAD and computational dynamics methods.</td>
</tr>
<tr>
<td></td>
<td>Applied Material Studies (Associate Prof. Tadao Fukuta)</td>
<td>Specially processed materials are often used for the design and production of equipment. This class focuses on the basic structures and characteristics of representative machine materials such as steel and light metals, and processing methods and workability.</td>
</tr>
<tr>
<td></td>
<td>Intelligent Material (Syuji Ishihara*)</td>
<td>This class focuses on crystal, amorphous, and thin film composed of metals and metallic oxides, and helps students understand their electrical properties such as dielectricity and electrical conductivity, optical properties such as optical transparency, chemical properties such as acid resistance, and the relationship between the microscopic structures and chemical compositions of these materials.</td>
</tr>
<tr>
<td></td>
<td>Electric Power System Engineering (Associate Prof. Yoshitaka Tokunaga)</td>
<td>This class focuses on phenomena in electric power systems such as voltage fluctuation, power-factor adjustment, and higher harmonic waves utilizing actual aspects, and their tendencies from the viewpoint of electric power quality.</td>
</tr>
<tr>
<td>Human Information Systems Engineering Major</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Reliability Systems (Prof. Yoichiro Sato)</td>
<td>This class focuses on fault tolerance, including the basic concepts and methods of implementation and reliability evaluation for computer systems based on the fault tolerance concept. At the end of the class, students divide into small groups to work on a simple design problem.</td>
</tr>
<tr>
<td></td>
<td>Advanced Lecture on Image Engineering (Associate Prof. Hitoshi Yamauchi)</td>
<td>This lecture is based on recent technical trends in image processing technology of static images and dynamic images as a result of the rapid widespread use of cameras. Especially, the lecture focuses on tracking and detection of characteristics which are important in extracting and understanding information from images. Also, bibliography of related fields will be introduced in a group reading style, and debates will take place.</td>
</tr>
<tr>
<td>Majors</td>
<td>Name of Class (Instructors)</td>
<td>Class Description</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Human Information Systems Engineering Major</td>
<td>Physiological Information and Applied Human Science (Prof. Makoto Ayabe)</td>
<td>This class provides students opportunities to learn physiological information for use as a basis for creation considering physical and psychological characteristics of human. This class focuses on response and adjustment during resting period, exercising period, associated changes in the external environment, and differences in and among individuals by gender, age, and disease. It also helps students learn the principles of devices that use biological data to measure body information.</td>
</tr>
<tr>
<td></td>
<td>Human life engineering (Associate Prof. Seiji Saito)</td>
<td>Human life engineering is a practical technology that ties in making things for the comfortable living of people by the elucidation of the human life from the perspective of human. This class helps students learn the measurement and evaluation techniques and research experimental methods of physical, psychological and physiological functions for Human Centered Design. It also helps students learn the effective improvement method of the products through discussions about the various products made on the basis of ergonomics.</td>
</tr>
<tr>
<td></td>
<td>Collaborative Engineering (Prof. Teruaki Ito)</td>
<td>In the midst of rapid development of our network society, where everything is connected via IoT, the utilization of cooperative engineering has become a broad requirement. This class focuses on three basic supports in cooperative engineering - support for people and systems, among systems, and among people - to explain the basic concepts and basic technology required to design and establish systems centering on new user interface systems and interaction technology as applications of cooperative engineering.</td>
</tr>
<tr>
<td></td>
<td>Thermal Energy Engineering (Prof. Naoto Haruki)</td>
<td>Efficient use of thermal energy contributes to the realization of comfortable living environments. This class familiarizes students with the use of a wide range of practical thermal energy and current research. This class is also designed to equip students with the ability to discuss innovative uses of thermal energy.</td>
</tr>
<tr>
<td></td>
<td>Actuator Engineering (Prof. Masaki Hokari)</td>
<td>This class provides students opportunities to learn the basic roles, types, operating principles, and control methods for electric, hydraulic, pneumatic, and new principle actuators to cultivate the ability to design mechanical systems.</td>
</tr>
<tr>
<td></td>
<td>Mechanical Dynamics (Associate Prof. Sinichiro Ota)</td>
<td>The increasing complexity and miniaturization of devices and structures has led to vibration that significantly impacts the environment. Understanding the specifics of these phenomena is the essential first step in finding ways to control them. This class is designed to familiarize students with the theoretical and practical methodologies used to clarify vibration.</td>
</tr>
<tr>
<td>Common Major</td>
<td>Management of Technology (Hiroki Ogawa*)</td>
<td>This class helps students learn basic theories and concepts in technology management that should be mastered by engineers. It focuses on many cases closely associated with locality (Okayama, Japan, Asia, Internet society) and temporal axes (past, present, future), and introduces the instructor’s experience as an entrepreneur to teach students the technology management concept as an action agenda.</td>
</tr>
<tr>
<td></td>
<td>Advanced Lectures on Information Technology (Master’s Course Director and 4 other instructors)</td>
<td>This class is provided in an omnibus format taught by program graduates. The instructors extract portions of their current work to pass down to students in the master’s course.</td>
</tr>
<tr>
<td>Majors</td>
<td>Name of Class (Instructors)</td>
<td>Class Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Common Major</td>
<td>Technical Presentation Practice (Prof. Ai Sugimura)</td>
<td>This class is designed to enable students to give clear presentations in which important points are given with reference to notes rather than read verbatim from a script. With interactions during Q&A sessions in mind, students engage in role-play to learn how to handle and respond to questions.</td>
</tr>
<tr>
<td></td>
<td>System Engineering Special Exercise I (Full-time instructors)</td>
<td>This class provides students opportunities to read theses related to their individual research themes and present overviews in an easy-to-understand manner to acquire specialized knowledge related to their research themes and to improve their presentation techniques through Q & A sessions with other students in the class.</td>
</tr>
<tr>
<td></td>
<td>System Engineering Special Exercise II (Full-time instructors)</td>
<td>This class helps students summarize the progress of their research and present overviews in an easy-to-understand manner to acquire specialized knowledge related to their research themes and to improve their presentation techniques through Q & A sessions with other students in the class.</td>
</tr>
<tr>
<td></td>
<td>System Engineering Special Study I (Faculty advisors)</td>
<td>This class helps students to work on individual research themes and learn to autonomously perform research and development necessary as an engineer.</td>
</tr>
<tr>
<td></td>
<td>System Engineering Special Study II (Faculty advisors)</td>
<td>This class equips students with the ability to autonomously perform research and development necessary as an engineer by working on their own research themes in a manner similar to Electronics, Information and Communication Engineering Advanced Project I, and complete their master's theses.</td>
</tr>
<tr>
<td></td>
<td>Practice of Project Management (Prof. Hideyuki Ito)</td>
<td>Economic service systems have advanced in the 21st century (more than 70% of GDP), and approaches to knowledge economy have accelerated in Japan and other developed countries. Against this background, establishing and operating systems that offer high added-value products and services through project-type approaches based on interdisciplinary ideas are the key to competitiveness. This class teaches students in master and doctoral programs in the fields of science and engineering project planning and operation management based on the integration of science and liberal arts. The content matches project management practice provided by graduate schools in Europe and the U.S. using English as the main language to ensure global equivalency.</td>
</tr>
<tr>
<td></td>
<td>Technical Presentation Seminar I (Prof. Hideyuki Ito Prof. Ai Sugimura)</td>
<td>English is important as a global language, and it also plays an important role in presentations at international conferences. This class is designed to help students in the field of engineering improve their English communication ability for effective publications and presentations. Focusing on oral presentations, students practice pronunciation, speed, intonation, as well as natural and smooth ways of expressing themselves while learning English expressions for numbers, units, formulas, a wide range of graphs, and experiment equipment used in their majors using pair and group work.</td>
</tr>
<tr>
<td>Majors</td>
<td>Name of Class (Instructors)</td>
<td>Class Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Common</td>
<td>Introduction to Interdisciplinary Research (Prof. Hideyuki Ito and others)</td>
<td>It is essential for us to maintain a high level of scientific technology for multilateral cooperation while working toward the advancement of globalization in the 21st century. Science contributes to social progress through the elimination of subjective recognition while bolstering objective perception, and rational production of knowledge, technology, thought and methods. Although the 20th century saw the segmentation of specializations, it is now necessary to deepen and reintegrate specializations emerging since the late 20th century. Class assignments are designed to help students to understand the process of planning and conducting research, developing methodology, analyzing and summarizing data using actual research conducted by mid-career researchers at Okayama Prefectural University to prepare them for their own research.</td>
</tr>
</tbody>
</table>

(Note) *(part-time instructor)*

3. Cross-disciplinary Classes
Master’s course have cross-disciplinary classes in accordance with the collaborative graduate school system to further promote response to new research themes and regional cooperation. Okayama Prefectural University provides research and education utilizing research resources at the Industrial Technology Center of Okayama Prefecture. Students who have a desire to perform research in cross-disciplinary classes should belong to a major in the master’s course and take lectures at Okayama Prefectural University campus and receive research instructions at a collaborative research institution.

To graduate from the Master’s Course, Graduate School of Computer Science and Systems Engineering, students must meet all of the following requirements:

1. Attend the school for at least two years. Those who have achieved excellent academic achievement are, however, only required to attend the school for one year.
2. Earn at least 20 credits from the lecture classes.
3. Earn 10 credits in total: two credits of “System Engineering Special Exercise I,” two credits of “System Engineering Special Exercise II,” three credits of “System Engineering Special Study I” and three credits of “System Engineering Special Study II.”
4. Submit a master’s thesis prepared under the guidance of the faculty advisor in charge while in school and pass the review and final examination.
Map of Examination Venue
Okayama Prefectural University

Examination Venue Guide

〈Transport〉
A 5 minute walk from JR Momotaro Line Hattori Station (takes approximately 30 minutes from JR Okayama Station and 8 minutes from JR Soja Station)
Approximately 2.5km from the Okayama Expressway, Okayama Soja Interchange.
Approximately 18km from the center of Okayama city (via Route180) and 12km from the center of Kurashiki city (via Route 429).
Where to contact concerning application, entrance examination and other information

Admissions Service Section
Okayama Prefectural University
111 Kuboki, Soja-shi, Okayama Pref. 719-1197, JAPAN
Phone:+81-866-94-9161(Direct Number)
 +81-866-94-2111(Main Number)

Website https://www.oka-pu.ac.jp/
e-mail address nyushi@oka-pu.ac.jp